6-DOF GRASP姿势检测多盖和多对象是智能机器人领域的挑战任务。为了模仿人类的推理能力来抓住对象,广泛研究了数据驱动的方法。随着大规模数据集的引入,我们发现单个物理度量通常会产生几个离散水平的掌握置信分数,这无法很好地区分数百万的掌握姿势并导致不准确的预测结果。在本文中,我们提出了一个混合物理指标来解决此评估不足。首先,我们定义一个新的度量标准是基于力闭合度量的,并通过对象平坦,重力和碰撞的测量来补充。其次,我们利用这种混合物理指标来产生精致的置信度评分。第三,为了有效地学习新的置信度得分,我们设计了一个称为平面重力碰撞抓氏(FGC-Graspnet)的多分辨率网络。 FGC-GRASPNET提出了多个任务的多分辨率特征学习体系结构,并引入了新的关节损失函数,从而增强了GRASP检测的平均精度。网络评估和足够的实际机器人实验证明了我们混合物理指标和FGC-GraspNet的有效性。我们的方法在现实世界中混乱的场景中达到了90.5 \%的成功率。我们的代码可在https://github.com/luyh20/fgc-graspnet上找到。
translated by 谷歌翻译
扩散概率模型(DPM)是新兴的强大生成模型。尽管具有高质量的生成性能,但DPM仍然遭受缓慢采样的苦难,因为它们通常需要数百或数千个大型神经网络的顺序函数评估(步骤)来绘制样本。可以将来自DPM的采样视为求解相应的扩散普通微分方程(ODE)。在这项工作中,我们提出了扩散ODE的溶液的精确表述。该公式通过分析计算解决方案的线性部分,而不是将所有术语留给先前工作中采用的黑盒ode求解器。通过应用可变化的更改,可以将解决方案等效地简化为神经网络的指数加权积分。根据我们的公式,我们提出了DPM-Solver,这是一种通过收敛顺序保证的快速专用高阶求解器。 DPM溶剂适用于离散时间和连续时间DPM,而无需进行任何进一步的培训。实验结果表明,DPM-Solver可以在各种数据集上的10至20个功能评估中生成高质量的样本。我们在10个功能评估中实现了4.70 FID,在CIFAR10数据集上进行20个功能评估中的2.87 FID,与以前的各种数据集中的先前最先进的无培训样本器相比,$ 4 \ sim 16 \ times $速度。
translated by 谷歌翻译
To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers $13$ common text generation tasks and their corresponding $83$ datasets and further incorporates $45$ PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement $4$ efficient training strategies and provide $4$ generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox.
translated by 谷歌翻译
Generative models have been widely applied to solve extractive tasks, where parts of the input is extracted to form the desired output, and achieved significant success. For example, in extractive question answering (QA), generative models have constantly yielded state-of-the-art results. In this work, we identify the issue of tokenization inconsistency that is commonly neglected in training these models. This issue damages the extractive nature of these tasks after the input and output are tokenized inconsistently by the tokenizer, and thus leads to performance drop as well as hallucination. We propose a simple yet effective fix to this issue and conduct a case study on extractive QA. We show that, with consistent tokenization, the model performs better in both in-domain and out-of-domain datasets, with a notable average of +1.7 F2 gain when a BART model is trained on SQuAD and evaluated on 8 QA datasets. Further, the model converges faster, and becomes less likely to generate out-of-context answers. With these findings, we would like to call for more attention on how tokenization should be done when solving extractive tasks and recommend applying consistent tokenization during training.
translated by 谷歌翻译
There has been great progress in unifying various table-to-text tasks using a single encoder-decoder model trained via multi-task learning (Xie et al., 2022). However, existing methods typically encode task information with a simple dataset name as a prefix to the encoder. This not only limits the effectiveness of multi-task learning, but also hinders the model's ability to generalize to new domains or tasks that were not seen during training, which is crucial for real-world applications. In this paper, we propose compositional task configurations, a set of prompts prepended to the encoder to improve cross-task generalization of unified models. We design the task configurations to explicitly specify the task type, as well as its input and output types. We show that this not only allows the model to better learn shared knowledge across different tasks at training, but also allows us to control the model by composing new configurations that apply novel input-output combinations in a zero-shot manner. We demonstrate via experiments over ten table-to-text tasks that our method outperforms the UnifiedSKG baseline by noticeable margins in both in-domain and zero-shot settings, with average improvements of +0.5 and +12.6 from using a T5-large backbone, respectively.
translated by 谷歌翻译
Image-text retrieval (ITR) is a challenging task in the field of multimodal information processing due to the semantic gap between different modalities. In recent years, researchers have made great progress in exploring the accurate alignment between image and text. However, existing works mainly focus on the fine-grained alignment between image regions and sentence fragments, which ignores the guiding significance of context background information. Actually, integrating the local fine-grained information and global context background information can provide more semantic clues for retrieval. In this paper, we propose a novel Hierarchical Graph Alignment Network (HGAN) for image-text retrieval. First, to capture the comprehensive multimodal features, we construct the feature graphs for the image and text modality respectively. Then, a multi-granularity shared space is established with a designed Multi-granularity Feature Aggregation and Rearrangement (MFAR) module, which enhances the semantic corresponding relations between the local and global information, and obtains more accurate feature representations for the image and text modalities. Finally, the ultimate image and text features are further refined through three-level similarity functions to achieve the hierarchical alignment. To justify the proposed model, we perform extensive experiments on MS-COCO and Flickr30K datasets. Experimental results show that the proposed HGAN outperforms the state-of-the-art methods on both datasets, which demonstrates the effectiveness and superiority of our model.
translated by 谷歌翻译
Recent work on 4D point cloud sequences has attracted a lot of attention. However, obtaining exhaustively labeled 4D datasets is often very expensive and laborious, so it is especially important to investigate how to utilize raw unlabeled data. However, most existing self-supervised point cloud representation learning methods only consider geometry from a static snapshot omitting the fact that sequential observations of dynamic scenes could reveal more comprehensive geometric details. And the video representation learning frameworks mostly model motion as image space flows, let alone being 3D-geometric-aware. To overcome such issues, this paper proposes a new 4D self-supervised pre-training method called Complete-to-Partial 4D Distillation. Our key idea is to formulate 4D self-supervised representation learning as a teacher-student knowledge distillation framework and let the student learn useful 4D representations with the guidance of the teacher. Experiments show that this approach significantly outperforms previous pre-training approaches on a wide range of 4D point cloud sequence understanding tasks including indoor and outdoor scenarios.
translated by 谷歌翻译
As Deep Neural Networks (DNNs) are increasingly deployed in safety critical and privacy sensitive applications such as autonomous driving and biometric authentication, it is critical to understand the fault-tolerance nature of DNNs. Prior work primarily focuses on metrics such as Failures In Time (FIT) rate and the Silent Data Corruption (SDC) rate, which quantify how often a device fails. Instead, this paper focuses on quantifying the DNN accuracy given that a transient error has occurred, which tells us how well a network behaves when a transient error occurs. We call this metric Resiliency Accuracy (RA). We show that existing RA formulation is fundamentally inaccurate, because it incorrectly assumes that software variables (model weights/activations) have equal faulty probability under hardware transient faults. We present an algorithm that captures the faulty probabilities of DNN variables under transient faults and, thus, provides correct RA estimations validated by hardware. To accelerate RA estimation, we reformulate RA calculation as a Monte Carlo integration problem, and solve it using importance sampling driven by DNN specific heuristics. Using our lightweight RA estimation method, we show that transient faults lead to far greater accuracy degradation than what todays DNN resiliency tools estimate. We show how our RA estimation tool can help design more resilient DNNs by integrating it with a Network Architecture Search framework.
translated by 谷歌翻译
We present a method for introducing a text encoder into pre-trained end-to-end speech translation systems. It enhances the ability of adapting one modality (i.e., source-language speech) to another (i.e., source-language text). Thus, the speech translation model can learn from both unlabeled and labeled data, especially when the source-language text data is abundant. Beyond this, we present a denoising method to build a robust text encoder that can deal with both normal and noisy text data. Our system sets new state-of-the-arts on the MuST-C En-De, En-Fr, and LibriSpeech En-Fr tasks.
translated by 谷歌翻译
Sky-image-based solar forecasting using deep learning has been recognized as a promising approach in reducing the uncertainty in solar power generation. However, one of the biggest challenges is the lack of massive and diversified sky image samples. In this study, we present a comprehensive survey of open-source ground-based sky image datasets for very short-term solar forecasting (i.e., forecasting horizon less than 30 minutes), as well as related research areas which can potentially help improve solar forecasting methods, including cloud segmentation, cloud classification and cloud motion prediction. We first identify 72 open-source sky image datasets that satisfy the needs of machine/deep learning. Then a database of information about various aspects of the identified datasets is constructed. To evaluate each surveyed datasets, we further develop a multi-criteria ranking system based on 8 dimensions of the datasets which could have important impacts on usage of the data. Finally, we provide insights on the usage of these datasets for different applications. We hope this paper can provide an overview for researchers who are looking for datasets for very short-term solar forecasting and related areas.
translated by 谷歌翻译